

30 November 2023

High-grade copper-PGE zones extended at Gonneville

Wide zones of high-grade Cu-PGE sulphide mineralisation intersected in deeper step-out drilling, enhancing the underground potential of the Gonneville Project

Highlights

- Wide-spaced step-out drilling at the **100%-owned Gonneville Ni-Cu-PGE Project** continues to expand the Deposit to the north-west and enhance high-grade underground potential.
- Upside to project metrics and development optionality is being assessed in the initial phase of the ongoing Pre-Feasibility Study, with a near-term focus on improving feed grades – which also results in higher metallurgical recoveries.
- « Significant new step-out drill results outside the current Resource include:
 - « 8.0m @ 5.83g/t 3E¹, 0.15% Ni, 1.12% Cυ, 0.01% Co (3.05% NiEq²) from 543m (JD415)
 - (4 14.0m @ 5.72g/t 3E, 0.19% Ni, 0.36% Cu, 0.02% Co (2.30% NiEq) from 1096m (JD426)
 - **16.0m @ 6.17g/t 3E**, 0.21% Ni, 0.15% Cu, 0.02% Co (**2.23% NiEq**) from 478m (JD389)
 - **29.0m @ 4.06g/t 3E**, 0.22% Ni, 0.32% Cu, 0.02% Co (**1.76% NiEq**) from 507m (JD389)
 - **20.0m @ 3.20g/t 3E**, 0.14% Ni, **0.55% Cu**, 0.02% Co (**1.62% NiEq**) from 994m (JD425)
 - **8.6m @ 2.06g/t 3E, 0.45% Ni**, 0.22% Cu, 0.04% Co (**1.38% NiEq**) from 449.1m (JD423)
 - **20.0m @ 4.63g/t 3E**, 0.19% Ni, 0.08% Cu, 0.02% Co (**1.65% NiEq**) from 470m (JD423)
 - (10.0m @ 2.13g/t 3E, 0.18% Ni, 0.21% Cu, 0.01% Co (1.02% NiEq) from 1191m (JD408)
- Early underground mining options targeting high-grade zones extending from a depth of ~400m to 1,100m+ at the northern end of the Resource, in parallel with open-pit mining at the southern end of the Resource, continue to be investigated.
- Infill drilling at the southern end of the Resource is also now complete, with recent significant results continuing to demonstrate **shallow**, **high-grade mineralisation** in the starter pit area:
 - **7.9m @ 10.7g/t 3E, 0.56% Ni, 4.74% Cu, 0.05% Co (7.90% NiEg)** from 90.5m (JD402)
 - (**10.0m @ 3.79g/t 3E, 0.48% Ni, 0.72% Cu**, 0.03% Co (**2.29% NiEq**) from 123m (JD402)
 - **4.3m @ 3.49g/t 3E**, 0.21% Ni, **0.98% Cu**, 0.02% Co (**2.21% NiEq**) from 313.8m (JD402)
 - **13.7m @ 3.34g/t 3E, 0.61% Ni**, 0.14% Cu, **0.05% Co (1.84% NiEq)** from 222m (JD390)
- The Gonneville Resource model is currently being re-wireframed and re-modelled to incorporate recent drill results and a smaller block sizing, suitable for selective open-pit and underground mining approaches (reducing dilution).
- The high-grade sulphide Resource update is expected to be completed in late Q1 2024.

Registered Office ABN 47 116 648 956

 $^{^{1}}$ 3E = Pd+Pt+Au

 $^{^{2}}$ NiEq% = Ni(%) + 0.32xPd(g/t) + 0.21xPt(g/t) + 0.38xAu(g/t) + 0.83xCu(%) + 3.00xCo(%). Refer Appendix B attached.

Overview

Chalice Mining Limited ("Chalice" or "the Company", ASX: CHN) is pleased to provide an update on ongoing exploration activities at its 100%-owned **Gonneville Nickel-Copper-Platinum Group Element** (**PGE) Project** ("Gonneville"), located ~70km north-east of Perth in Western Australia.

Chalice's near-term focus for the Gonneville Project is project optimisation, with a key focus on improving feed grades and metallurgical recoveries through a high-grade open-pit and underground starter case (by adopting a higher cut-off grade and selective mining approach).

The Gonneville Resource contains several zones of continuous high-grade sulphide mineralisation, starting from a depth of ~40m. The recent Scoping Study only considered bulk open-pit mining options (refer to ASX announcement on 29 August 2023).

Metallurgical testwork to date indicates that any improvement in feed grade to the processing plant is also expected to result in higher metallurgical recoveries and therefore can have a material positive impact on project economics (refer to ASX Announcement on 7 November 2023).

Chalice also continues to advance the Pre-Feasibility Study (PFS) and ongoing strategic partnering process. The regulatory approvals process for a potential mine at Gonneville (located entirely on Chalice-owned farmland) is expected to commence in H1 2024. In parallel, the Company continues to explore the surrounding region to determine the full scale of the mineral system.

Exploration activities at the Project are focused on wide-spaced step-out drilling in areas down-plunge of known high-grade zones to the north-west of the Mineral Resource Estimate (Resource) – 560Mt @ 0.88g/t 3E, 0.16% Ni, 0.09% Cu, 0.015% Co (~0.54% NiEq or ~1.7g/t PdEq) (refer to ASX Announcement of 28 March 2023 and attached Appendix A).

Importantly, step-out drilling continues to intersect wide high-grade sulphide zones >1km beyond the limit of the current Resource to the north-west, demonstrating the potential growth in the Resource at depth and the potential for high-grade underground mining well beyond the limit of the Scoping Study open-pit mine designs.

Step-out drilling is continuing with two rigs drilling on a \sim 160m hole spacing, initially to scope the extent and width of the high-grade mineralised zones between the current Resource and the intersections at depth.

The Gonneville Resource model is currently being re-wireframed and re-modelled to incorporate new drill results and a smaller block sizing, suitable for selective open-pit and underground mining approaches (reducing dilution). The high-grade sulphide Resource update is expected to be completed in late Q1 2024.

Once completed, new high-grade open-pit and underground starter cases will be finalised. Any potential new starter cases will be evaluated in parallel to the Scoping Study bulk open-pit cases as part of the PFS.

Technical discussion

Several new high-grade zones have been intersected in recent step-out drilling, with significant results returned largely from the Gonneville 'G4' footwall position within the host intrusion. Typically, these zones have elevated PGE, gold and copper grades, associated with disseminated chalcopyrite.

The controls on the high-grade zones at the footwall position are unclear, however drilling to date has shown that zone orientation is consistent and at predictable depths.

Significant new high-grade step-out results (beyond the current Resource) include:

- « 8.0m @ 5.83g/t 3E, 0.15% Ni, 1.12% Cu, 0.01% Co (3.05% NiEq) from 543m (JD415)
- 14.0m @ 5.72g/t 3E, 0.19% Ni, 0.36% Cu, 0.02% Co (2.30% NiEq) from 1096m (JD426)
- 16.0m @ 6.17g/t 3E, 0.21% Ni, 0.15% Cu, 0.02% Co (2.23% NiEq) from 478m (JD389)

- « 29.0m @ 4.06g/t 3E, 0.22% Ni, 0.32% Cu, 0.02% Co (1.76% NiEq) from 507m (JD389
- « 20.0m @ 3.20g/t 3E, 0.14% Ni, 0.55% Cu, 0.02% Co (1.62% NiEq) from 994m (JD425)
- « 8.6m @ 2.06g/t 3E, 0.45% Ni, 0.22% Cu, 0.04% Co (1.38% NiEq) from 449.1m (JD423)
- 4 20.0m @ 4.63g/t 3E, 0.19% Ni, 0.08% Cu, 0.02% Co (1.65% NiEq) from 470m (JD423)
- (10.0m @ 2.13g/t 3E, 0.18% Ni, 0.21% Cu, 0.01% Co (1.02% NiEq) from 1191m (JD408) this hole was abandoned above target depth due to hole problems and will be re-drilled.
- « 21.6m @ 2.64g/t 3E, 0.12% Ni, 0.08% Cu, 0.01% Co (0.99% NiEq) from 518m (JD420)

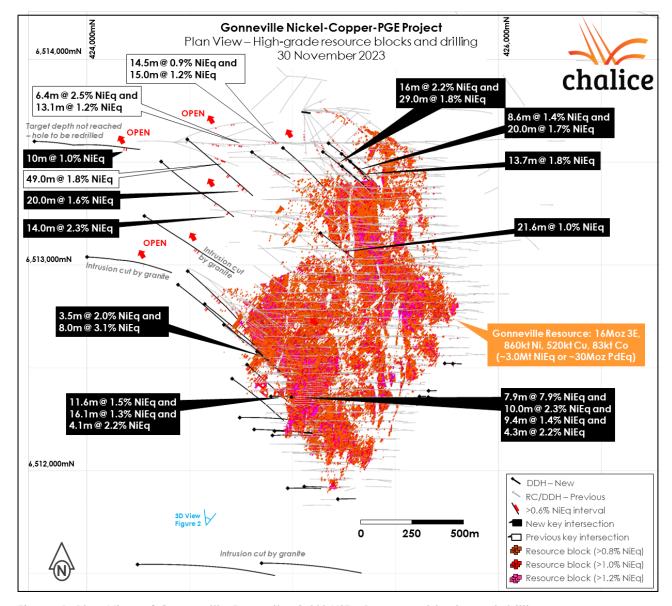


Figure 1. Plan View of Gonneville Deposit, >0.8% NiEq Resource blocks and drilling.

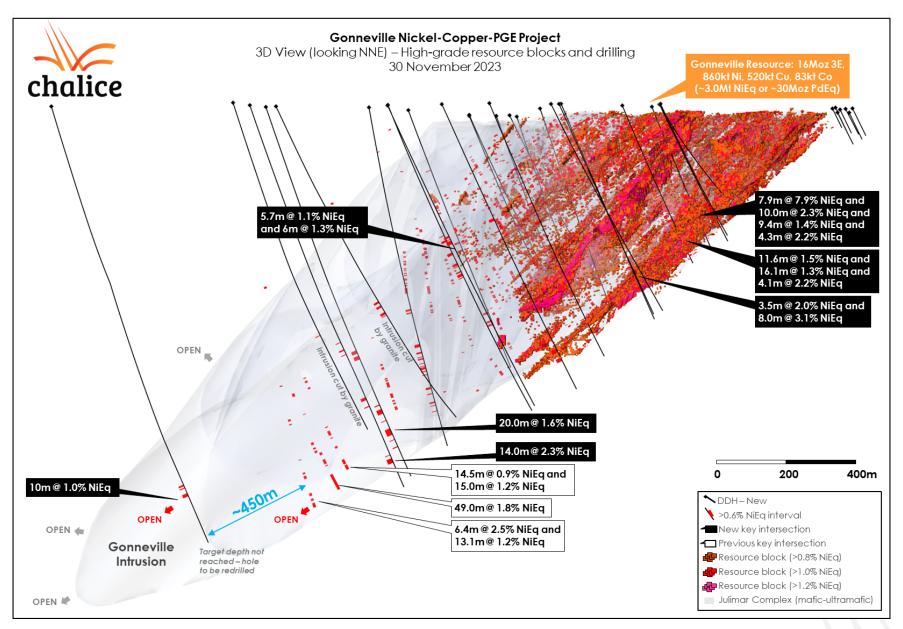


Figure 2. 3D view (looking NNE) of Gonneville Intrusion, >0.8% NiEq Resource blocks and drilling.

In addition, infill drilling has now been completed in areas of shallow Inferred Resources, with the aim of improving geological confidence and upgrading those areas to the Indicated category. Results continue to demonstrate shallow, high-grade mineralisation in the starter pit area.

Significant new high-grade infill results include:

- « 7.9m @ 10.69g/t 3E, 0.56% Ni, 4.74% Cu, 0.05% Co (7.90% NiEq) from 90.5m (JD402)
- « 10.0m @ 3.79g/t 3E, 0.48% Ni, 0.72% Cu, 0.03% Co (2.29% NiEq) from 123m (JD402)
- (12.4m @ 1.57g/t 3E, 0.13% Ni, 0.47% Cu, 0.01% Co (1.04% NiEq) from 277m (JD402)
- 4 9.4m @ 2.01g/t 3E, 0.16% Ni, 0.64% Cu, 0.02% Co (1.38% NiEq) from 293m (JD402)
- « 4.3m @ 3.49g/t 3E, 0.21% Ni, 0.98% Cu, 0.02% Co (2.21% NiEq) from 313.8m (JD402)
- (c) 16.1m @ 1.6g/t 3E, 0.16% Ni, 0.69% Cu, 0.01% Co (1.28% NiEq) from 404.5m (JD407)
- « 4.1m @ 2.63g/t 3E, 0.19% Ni, 1.39% Cu, 0.02% Co (2.19% NiEq) from 426.2m (JD407)
- « 3.5m @ 1.95g/t 3E, 0.2% Ni, 1.35% Cu, 0.02% Co (1.95% NiEq) from 510.5m (JD415)
- (18.0m @ 2.58g/t 3E, 0.14% Ni, 0.18% Cu, 0.01% Co (1.10% NiEg) from 401m (JD388)
- 9.0m @ 2.43g/t 3E, 0.13% Ni, 0.22% Cu, 0.01% Co (1.07% NiEg) from 422m (JD388)
- (4 13.7m @ 3.34g/t 3E, 0.61% Ni, 0.14% Cu, 0.05% Co (1.84% NiEq) from 222m (JD390)

Authorised for release by the Disclosure Committee of the Company.

For further information please visit <u>www.chalicemining.com</u> or contact:

Corporate Enquiries

Alex Dorsch
Managing Director & CEO
Chalice Mining Limited
+61 8 9322 3960
info@chalicemining.com

Media Enquiries

Nicholas Read Principal and Managing Director Read Corporate Investor Relations +61 8 9388 1474 info@readcorporate.com.au

Follow our communications

LinkedIn: <u>chalice-mining</u>
Twitter: <u>@chalicemining</u>

About the Gonneville Nickel-Copper-PGE Project

The Gonneville Nickel-Copper-Platinum Group Element (Ni-Cu-PGE) Project is a pre-development project located on Chalice-owned farmland, ~70km north-east of Perth in Western Australia (Figure 3). The Project was initially staked in 2018 as part of Chalice's global search for high-potential nickel sulphide exploration opportunities.

The Project is centred on the Gonneville Resource – a significant greenfield mineral discovery by Chalice's geologists in early 2020. The Resource hosts a rare mix of critical green metals required for decarbonisation and urbanisation, including nickel, copper, cobalt, palladium and platinum. Large-scale deposits like Gonneville are very rare and therefore have high strategic value, as current production of PGE metals is dominated by Russia and South Africa.

Gonneville has a tier-1 scale Mineral Resource Estimate (Resource) (refer to ASX Announcement of 28 March 2023 and attached Appendix A) containing approximately 16 million ounces of platinum group elements (PGEs), 860 thousand tonnes of nickel, 520 thousand tonnes of copper and 83 thousand tonnes of cobalt, making it one of the largest recent nickel sulphide discoveries worldwide, and the largest PGE discovery in Australian history.

The Company completed a Scoping Study for the Gonneville Project in 2023, which assessed bulk open-pit development options for the Project. The Study outlined a new long-life, low-cost, low-carbon green metals mine in Western Australia. with the potential to deliver strong financial returns and regional benefits, plus significant upside.

Chalice recognises the need to develop the Gonneville Project sustainably and responsibly, with a best practice approach to environmental, social and cultural heritage management. Chalice is currently continuing exploration and resource definition drilling as well as studies to determine the feasibility of the Project.

The Gonneville discovery has opened up a new unexplored mineral province, the West Yilgarn Ni-Cu-PGE Province in Western Australia. Chalice has a first-mover advantage in this exciting new region and is progressing exploration activities across the West Yilgarn concurrently with pre-development activities at Gonneville.

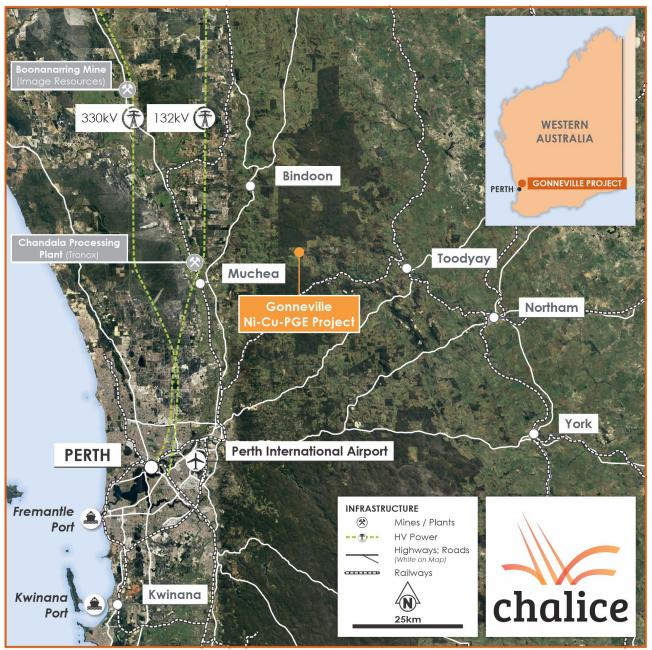


Figure 3. Gonneville Ni-Cu-PGE Project location.

Competent Person's Statement

The information in this announcement that relates to new Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr. Bruce Kendall BSc (Hons), a Competent Person, who is a Member of the Australian Institute of Geoscientists. Mr. Kendall is a full-time employee of the Company, is entitled to participate in Chalice's Employee Securities Incentive

Plan and his associate holds securities in Chalice. Mr Kendall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Kendall consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to previously reported exploration results for the Project are extracted from the following ASX announcements:

"New Wide High-grade Zones in 900m Step-out Drill Hole" 31 July 2023

The above announcement is available to view on the Company's website at www.chalicemining.com. The Company confirms that it is not aware of any new information or data that materially affects the exploration results included in the relevant original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the relevant original market announcement.

The information in this announcement that relates to Mineral Resources has been extracted from the ASX announcement titled "Gonneville Resource increases by $\sim 50\%$ to $\sim 3Mt$ NiEq" dated 28 March 2023. This announcement is available to view on the Company's website at www.chalicemining.com.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimates in the original release continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the relevant original market announcement. Refer to Appendix A and Appendix B for further information on the Mineral Resource Estimate and metal equivalents.

Forward Looking Statements

This announcement may contain forward-looking statements and forward information, (collectively, forward-looking statements). These forward-looking statements are made as of the date of this Report and Chalice Mining Limited (the Company) does not intend, and does not assume any obligation, to update these forward-looking statements.

Forward-looking statements relate to future events or future performance and reflect Company management's expectations or beliefs regarding future events and include, but are not limited to: the impact of the discovery on the Gonneville Project's capital payback; the Company's planned strategy and corporate objectives; "objectives of the strategic partnering process", the realisation of Mineral Resource Estimates; anticipated production; sustainability initiatives; climate change scenarios; the likelihood of further exploration success; the timing of planned exploration and study activities on the Company's projects; mineral processing strategy; access to sites for planned drilling activities; planned production and operating costs profiles; planned capital requirements; the success of future potential mining operations and the timing of the receipt of exploration results.

In certain cases, forward-looking statements can be identified by the use of words such as, "considered", "continue", "could", "estimate", "expected", "for", "future", "interpreted", "is", "likely", "may", "opportunity", "optionality", "plan" or "planned", "potential", "strategy", "target", "upside", "which", "will" or variations of such words and phrases or statements that certain actions, events or results may, could, would, might or will be taken, occur or be achieved or the negative of these terms or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements.

Such factors may include, among others, risks related to actual results of current or planned exploration activities; whether geophysical and geochemical anomalies are related to economic mineralisation or some other feature; whether visually identified mineralisation is confirmed by laboratory assays; obtaining appropriate approvals to undertake exploration activities; metal grades being realised; metallurgical recovery rates being realised; results of planned metallurgical test work including results from other zones not tested yet, scaling up to commercial operations; changes in project parameters as plans continue to be refined; changes in exploration programs and budgets based upon the results of exploration; successful completion of the strategic partnering process; changes in commodity prices and economic conditions; political and social risks, accidents, labour disputes and other risks of the mining industry; delays or difficulty in obtaining governmental approvals, necessary licences, permits or financing to undertake future mining development activities; changes to the regulatory framework within which Chalice operates or may in the future; movements in the share price of investments and the timing and proceeds realised on future disposals of investments as well as those factors detailed from time to time in the Company's interim and annual financial statements, all of which are filed and available for review on the ASX at asx.com.au.

Although the Company has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated, or intended. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements.

Mineral Resources Reporting Requirements

As an Australian Company with securities listed on the Australian Securities Exchange (ASX), Chalice is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act 2001 and the ASX listing rules. It is a requirement of the ASX listing rules that the reporting of exploration results and mineral resources estimates are in accordance with the 2012 edition of the Australasian Code for Reporting of exploration Results, Minerals Resources and Ore Reserves ("JORC Code").

The requirements of JORC Code differ in certain material respects from the disclosure requirements of United States securities laws and other reporting regimes. There is no assurance that the Company's mineral resource estimates and related disclosures prepared under the JORC Code would be the same as those prepared under United States securities law and other reporting regimes. The terms used in this announcement are as defined in the JORC Code. The definitions of these terms differ from the definitions of such terms for purposes of the disclosure requirements in the United States and other reporting regimes.

Mineral Resource Estimates that are not Ore Reserves do not have demonstrated technical feasibility and economic viability. Due to lower certainty, the inclusion of Mineral Resource Estimates should not be regarded as a representation by Chalice that such amounts will be economically exploited, and investors are cautioned not to place undue reliance upon such figures. No assurances can be given that the estimates of Mineral Resources presented in this report will be recovered at the tonnages and grades presented, or at all.

Table 1. Significant new drill intersections (Sulphide: >0.3% NiEq, >0.6% NiEq) – Gonneville Project.

abic 1. 5i	<u> </u>			` '			-1/	-1,		ne vine i roje	
Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)	Туре
JD388	81.2	88.0	6.8	0.61	0.31	0.02	0.04	0.02	0.01	0.35	Infill
JD388	125.5	138.0	12.5	1.00	0.41	0.03	0.11	0.16	0.01	0.69	Infill
Incl	125.5	132.2	6.7	1.39	0.59	0.04	0.14	0.27	0.01	0.98	Infill
JD388	293.6	496.1	202.5	0.78	0.19	0.03	0.14	0.09	0.01	0.56	Infill
Incl	297.0	310.0	13.0	1.30	0.29	<0.01	0.21	0.10	0.02	0.83	Infill
and	350.0	352.0	2.0	1.25	0.26	<0.01	0.19	0.03	0.02	0.72	Infill
and	383.6	386.0	2.4	0.85	0.26	0.21	0.08	0.25	0.01	0.72	Infill
and	394.0	396.0	2.0	0.92	0.15	0.05	0.21	0.13	0.02	0.72	Infill
and	401.0	419.0	18.0	1.84	0.57	0.17	0.14	0.18	0.01	1.10	Infill
and	422.0	431.0	9.0	1.73	0.59	0.11	0.13	0.22	0.01	1.07	Infill
and	435.0	437.0	2.0	0.70	0.12	0.03	0.23	0.13	0.03	0.67	Infill
and	452.0	455.0	3.0	0.86	0.19	0.03	0.14	0.13	0.02	0.63	Infill
and	481.0	490.0	9.0	0.82	0.19	0.03	0.16	0.31	0.02	0.78	Infill
JD389	196.0	205.0	9.0	0.76	2.02	0.01	0.03	<0.01	0.01	0.72	Infill
Incl	196.0	198.0	2.0	1.85	5.38	0.02	0.03	<0.01	0.01	1.78	Infill
JD389	210.0	212.0	2.0	1.09	0.42	0.03	0.08	0.08	0.01	0.62	Infill
JD389	222.0	247.0	25.0	0.70	0.30	0.02	0.13	0.10	0.01	0.55	Infill
Incl	242.8	247.0	4.3	1.77	0.78	0.04	0.20	0.23	0.02	1.20	Infill
JD389	380.0	391.0	11.0	0.35	0.09	0.01	0.12	0.10	0.02	0.39	Infill
JD389	463.6	541.0	77.5	2.26	0.67	0.11	0.18	0.17	0.02	1.28	Extension
Incl	478.0	494.0	16.0	4.54	1.40	0.23	0.21	0.15	0.02	2.23	Extension
and	507.0	536.0	29.0	3.01	0.91	0.15	0.22	0.32	0.02	1.76	Extension
JD390	59.9	64.6	4.7	0.60	1.52	0.01	0.03	<0.01	0.01	0.57	Infill
JD390	72.0	84.0	12.0	0.34	0.18	0.07	0.09	0.08	0.01	0.36	Infill
JD390	139.0	141.0	2.0	0.78	0.26	0.04	0.12	0.02	0.01	0.50	Infill
JD390	221.0	257.0	36.0	1.37	0.40	0.01	0.34	0.12	0.03	1.05	Infill
Incl	222.0	235.7	13.7	2.52	0.81	0.01	0.61	0.14	0.05	1.84	Infill
and	244.0	247.0	3.0	0.89	0.15	0.01	0.29	0.37	0.03	1.01	Infill
JD393	618.0	725.2	107.2	0.59	0.14	0.02	0.14	0.09	0.02	0.48	Extension
Incl	633.0	639.0	6.0	0.59	0.15	0.07	0.18	0.30	0.02	0.73	Extension
and	647.0	653.0	6.0	0.87	0.20	0.06	0.12	0.14	0.01	0.62	Extension
and	669.0	676.0	7.0	0.90	0.21	0.04	0.16	0.17	0.02	0.70	Extension
and	678.3	680.3	2.0	1.03	0.26	0.04	0.19	0.19	0.02	0.82	Extension
JD393	784.9	797.0	12.2	0.54	0.10	0.01	0.14	0.05	0.02	0.43	Extension
JD398	320.0	385.7	65.7	0.73	0.13	0.04	0.14	0.18	0.01	0.61	Infill
Incl	324.9	331.1	6.2	1.00	0.18	0.02	0.20	0.19	0.02	0.78	Infill
and	336.0	344.0	8.0	0.78	0.12	0.02	0.15	0.22	0.01	0.65	Infill
and	347.0	354.3	7.3	0.99	0.20	0.03	0.23	0.22	0.02	0.86	Infill
and	364.0	367.0	3.0	0.54	0.10	0.04	0.11	0.40	0.01	0.68	Infill
and	370.0	372.6	2.6	0.78	0.20	0.07	0.17	0.39	0.02	0.87	Infill
and	383.1	385.7	2.6	1.99	0.08	0.09	0.19	0.80	0.03	1.65	Infill

	F		lasks as said	D-I	D.L	A	NI!	0	0-		
Hole ID	From (m)	To (m)	Interval (m)	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cυ (%)	Co (%)	Ni Eq (%)	Туре
JD398	401.0	412.0	11.0	0.42	0.32	0.08	0.06	0.11	0.01	0.42	Extension
Incl	405.0	407.0	2.0	2.14	1.74	0.33	0.07	0.13	0.01	1.39	Extension
JD402	45.0	107.0	62.0	1.54	0.31	0.08	0.18	0.69	0.02	1.40	Infill
Incl	90.5	98.3	7.9	8.61	1.68	0.39	0.56	4.74	0.05	7.90	Infill
and	102.2	107.0	4.8	0.49	0.11	0.21	0.06	0.36	0.01	0.65	Infill
JD402	112.0	142.0	30.0	1.23	0.32	0.03	0.24	0.38	0.02	1.08	Infill
Incl	113.0	120.8	7.8	0.41	0.12	0.03	0.12	0.44	0.01	0.70	Infill
and	123.0	133.0	10.0	2.97	0.78	0.04	0.48	0.72	0.03	2.29	Infill
JD402	173.0	229.0	56.0	0.52	0.15	0.02	0.16	0.04	0.02	0.44	Infill
JD402	254.0	397.0	143.0	0.81	0.20	0.09	0.15	0.21	0.02	0.70	Infill
Incl	277.0	289.4	12.4	1.11	0.27	0.18	0.13	0.47	0.01	1.04	Infill
and	293.0	302.4	9.4	1.60	0.23	0.18	0.16	0.64	0.02	1.38	Infill
and	313.8	318.1	4.3	2.42	0.37	0.69	0.21	0.98	0.02	2.21	Infill
and	333.0	358.4	25.4	1.21	0.28	0.08	0.17	0.29	0.02	0.93	Infill
and	382.0	389.0	7.0	0.83	0.19	0.06	0.16	0.12	0.01	0.63	Infill
JD403	133.0	143.0	10.0	0.28	0.11	0.09	0.07	0.25	0.01	0.46	Infill
Incl	141.0	143.0	2.0	0.24	0.08	0.34	0.11	0.83	0.02	1.07	Infill
JD403	194.4	198.0	3.7	0.60	1.30	0.01	0.03	<0.01	0.01	0.52	Infill
JD403	227.0	238.0	11.0	0.51	0.42	0.02	0.07	0.07	0.01	0.42	Infill
JD403	274.1	313.6	39.5	1.29	0.24	0.01	0.19	0.12	0.02	0.80	Infill
Incl	281.0	284.0	3.0	0.93	0.19	0.01	0.14	0.13	0.02	0.64	Infill
and	292.0	295.0	3.0	0.98	0.21	<0.01	0.16	0.05	0.01	0.60	Infill
and	297.2	313.6	16.4	1.42	0.32	0.01	0.25	0.17	0.02	0.98	Infill
JD403	384.0	436.8	52.8	0.59	0.14	<0.01	0.14	0.13	0.02	0.51	Extension
Incl	422.0	436.8	14.8	0.75	0.19	0.01	0.17	0.23	0.02	0.69	Extension
JD403	470.4	477.3	6.9	0.49	0.12	<0.01	0.11	0.02	0.01	0.34	Extension
JD403	486.0	489.1	3.1	0.53	0.11	0.01	0.13	0.14	0.01	0.49	Extension
JD403	499.0	530.0	31.0	1.04	0.16	0.01	0.21	0.09	0.02	0.72	Extension
Incl	503.1	505.2	2.1	1.71	0.31	0.04	0.60	0.25	0.06	1.59	Extension
and	522.0	528.0	6.0	3.09	0.37	0.02	0.33	0.15	0.03	1.63	Extension
									0.01	0.33	
JD404	560.0	575.0	15.0	0.44	0.48	0.03	0.04	0.03	0.01	0.33	Extension
JD404 JD404	560.0	575.0 608.0	15.0 15.8	0.44 1.03	0.48	0.03	0.04	0.03	0.01	0.66	Extension Extension
JD404	592.2	608.0	15.8	1.03	0.41	0.03	0.14	0.07	0.01	0.66	Extension
JD404 Incl	592.2 592.2	608.0 598.0	15.8 5.8	1.03 1.58	0.41 0.58	0.03 0.05	0.14 0.18	0.07 0.10	0.01 0.01	0.66 0.95	Extension Extension
JD404 Incl and JD404	592.2 592.2 602.0	608.0 598.0 605.7	15.8 5.8 3.7	1.03 1.58 1.27	0.41 0.58 0.49	0.03 0.05 0.04	0.14 0.18 0.14	0.07 0.10 0.10	0.01 0.01 0.01	0.66 0.95 0.79	Extension Extension Extension
JD404 Incl and JD404	592.2 592.2 602.0 696.5	608.0 598.0 605.7 780.0	15.8 5.8 3.7 83.6	1.03 1.58 1.27 0.58	0.41 0.58 0.49 0.14	0.03 0.05 0.04 0.01	0.14 0.18 0.14 0.14	0.07 0.10 0.10 0.13	0.01 0.01 0.01 0.02	0.66 0.95 0.79 0.52	Extension Extension Extension
JD404 Incl and JD404 Incl	592.2 592.2 602.0 696.5 696.5	608.0 598.0 605.7 780.0 705.0	15.8 5.8 3.7 83.6 8.6	1.03 1.58 1.27 0.58 0.63	0.41 0.58 0.49 0.14 0.15	0.03 0.05 0.04 0.01 0.04	0.14 0.18 0.14 0.14 0.15	0.07 0.10 0.10 0.13 0.19	0.01 0.01 0.01 0.02 0.02	0.66 0.95 0.79 0.52 0.62	Extension Extension Extension Extension Extension
JD404 Incl and JD404 Incl and	592.2 592.2 602.0 696.5 696.5 719.0	608.0 598.0 605.7 780.0 705.0 724.0	15.8 5.8 3.7 83.6 8.6 5.0	1.03 1.58 1.27 0.58 0.63 0.68	0.41 0.58 0.49 0.14 0.15 0.11	0.03 0.05 0.04 0.01 0.04 <0.01	0.14 0.18 0.14 0.14 0.15 0.26	0.07 0.10 0.10 0.13 0.19 0.14	0.01 0.01 0.02 0.02 0.03	0.66 0.95 0.79 0.52 0.62 0.70	Extension Extension Extension Extension Extension Extension
JD404 Incl and JD404 Incl and and	592.2 592.2 602.0 696.5 696.5 719.0 733.0	608.0 598.0 605.7 780.0 705.0 724.0 735.0	15.8 5.8 3.7 83.6 8.6 5.0 2.0	1.03 1.58 1.27 0.58 0.63 0.68 0.53	0.41 0.58 0.49 0.14 0.15 0.11 0.11	0.03 0.05 0.04 0.01 0.04 <0.01 <0.01	0.14 0.18 0.14 0.14 0.15 0.26 0.22	0.07 0.10 0.10 0.13 0.19 0.14 0.70	0.01 0.01 0.02 0.02 0.03 0.03	0.66 0.95 0.79 0.52 0.62 0.70 1.08	Extension Extension Extension Extension Extension Extension Extension
JD404 Incl and JD404 Incl and and and	592.2 592.2 602.0 696.5 696.5 719.0 733.0 738.0	608.0 598.0 605.7 780.0 705.0 724.0 735.0 742.0	15.8 5.8 3.7 83.6 8.6 5.0 2.0 4.0	1.03 1.58 1.27 0.58 0.63 0.68 0.53	0.41 0.58 0.49 0.14 0.15 0.11 0.11	0.03 0.05 0.04 0.01 0.04 <0.01 <0.01	0.14 0.18 0.14 0.14 0.15 0.26 0.22	0.07 0.10 0.10 0.13 0.19 0.14 0.70 0.35	0.01 0.01 0.02 0.02 0.03 0.03 0.02	0.66 0.95 0.79 0.52 0.62 0.70 1.08 0.75	Extension Extension Extension Extension Extension Extension Extension Extension

	From	То	Interval	Pd	Pt	Αu	Ni	Си	Со		
Hole ID	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	Ni Eq (%)	Туре
and	775.0	778.0	3.0	0.94	0.19	0.01	0.20	0.13	0.02	0.71	Extension
JD404	786.0	794.0	8.0	0.47	0.11	0.01	0.13	0.08	0.01	0.41	Extension
Incl	786.0	788.0	2.0	0.60	0.15	0.02	0.18	0.21	0.02	0.64	Extension
JD404	811.0	896.3	85.3	0.70	0.15	0.02	0.15	0.06	0.02	0.51	Extension
Incl	824.0	830.0	6.0	1.04	0.19	0.01	0.19	0.04	0.02	0.65	Extension
and	842.1	845.0	2.9	0.73	0.20	0.01	0.23	0.12	0.03	0.69	Extension
and	867.0	871.8	4.8	1.49	0.32	0.11	0.22	0.19	0.03	1.04	Extension
and	877.0	879.0	2.0	1.36	0.35	0.09	0.17	0.04	0.02	0.80	Extension
and	894.0	896.0	2.0	1.20	0.31	0.10	0.17	0.17	0.02	0.85	Extension
JD405	265.0	270.1	5.0	1.28	0.41	0.02	0.27	0.11	0.03	0.96	Infill
Incl	267.0	270.1	3.1	1.75	0.60	0.03	0.34	0.14	0.04	1.27	Infill
JD405	274.4	298.0	23.7	0.51	0.14	0.02	0.16	0.07	0.02	0.47	Infill
Incl	279.0	281.0	2.0	1.04	0.20	0.01	0.24	0.01	0.02	0.68	Infill
JD405	303.0	316.0	13.0	0.56	0.12	0.01	0.14	0.09	0.01	0.47	Infill
JD405	328.0	351.0	23.0	0.43	0.08	0.03	0.11	0.11	0.01	0.41	Infill
Incl	342.0	344.0	2.0	0.48	0.08	0.10	0.11	0.48	0.02	0.76	Infill
JD405	380.0	383.0	3.0	0.29	0.11	0.04	0.08	0.11	0.01	0.34	Extension
JD406	45.2	56.0	10.8	0.32	0.08	0.01	0.10	0.10	0.01	0.35	Infill
JD406	68.1	87.9	19.9	0.56	0.15	0.01	0.13	0.09	0.02	0.46	Infill
Incl	85.0	87.0	2.0	0.81	0.19	0.01	0.17	0.14	0.02	0.63	Infill
JD406	144.4	158.1	13.7	0.58	0.11	<0.01	0.14	0.05	0.01	0.43	Infill
JD407	98.8	107.4	8.6	0.69	0.13	<0.01	0.14	0.07	0.01	0.49	Infill
JD407	154.3	183.0	28.7	0.68	0.11	0.01	0.22	0.07	0.02	0.58	Infill
Incl	168.0	172.0	4.0	2.64	0.30	0.02	0.74	0.21	0.04	1.95	Infill
and	177.0	179.6	2.6	0.73	0.16	0.02	0.18	0.12	0.02	0.60	Infill
JD407	206.0	241.0	35.0	1.01	0.20	<0.01	0.25	0.14	0.02	0.79	Infill
Incl	208.4	219.9	11.6	2.14	0.39	<0.01	0.46	0.25	0.03	1.53	Infill
JD407	275.6	332.5	57.0	0.52	0.15	0.01	0.15	0.03	0.01	0.42	Infill
Incl	285.0	288.0	3.0	0.88	0.22	0.01	0.19	0.06	0.02	0.62	Infill
JD407	345.9	372.3	26.4	0.67	0.18	0.04	0.15	0.14	0.01	0.57	Infill
Incl	363.8	371.0	7.2	1.23	0.34	0.10	0.11	0.46	0.01	1.04	Infill
JD407	379.0	399.3	20.3	0.42	0.11	0.02	0.16	0.04	0.02	0.41	Infill
JD407	403.9	420.6	16.7	1.10	0.23	0.25	0.16	0.67	0.01	1.25	Infill
Incl	404.5	420.6	16.1	1.12	0.22	0.26	0.16	0.69	0.01	1.28	Infill
JD407	426.2	430.2	4.1	1.54	0.70	0.39	0.19	1.39	0.02	2.19	Infill
JD407	437.3	473.2	35.9	0.64	0.18	0.08	0.14	0.10	0.01	0.54	Infill
Incl	444.0	453.0	9.0	0.74	0.13	0.08	0.18	0.19	0.02	0.68	Infill
and	458.0	460.0	2.0	0.74	0.15	0.04	0.18	0.16	0.02	0.66	Infill
and	471.0	473.2	2.2	2.83	1.19	0.61	0.06	0.06	0.02	1.55	Infill
JD408	1163.0	1206.0	43.0	0.75	0.33	0.03	0.11	0.09	0.01	0.54	Extension
Incl	1164.0	1169.0	5.0	1.24	0.49	0.03	0.14	0.09	0.01	0.76	Extension
and	1173.0	1176.0	3.0	0.88	0.28	0.03	0.14	0.13	0.01	0.64	Extension

	From	То	Interval	Pd	Pt	Αυ	Ni	Си	Со		
Hole ID	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	Ni Eq (%)	Туре
and	1191.0	1201.0	10.0	1.46	0.60	0.07	0.18	0.21	0.01	1.02	Extension
JD408	1254.0	1258.0	4.0	0.34	0.23	0.05	0.12	0.14	0.01	0.45	Extension
JD410	299.1	342.0	42.9	0.47	0.10	0.01	0.12	0.07	0.01	0.40	Infill
Incl	319.9	323.0	3.1	0.91	0.17	0.01	0.19	0.12	0.02	0.67	Infill
JD410	358.0	382.0	24.0	0.68	0.17	0.09	0.11	0.17	0.01	0.58	Infill
Incl	364.0	373.0	9.0	0.71	0.19	0.08	0.11	0.34	0.01	0.73	Infill
JD410	399.0	401.0	2.0	0.01	<0.01	0.01	0.07	0.30	0.02	0.38	Infill
JD415	32.2	39.0	6.8	0.54	0.11	0.01	0.13	0.06	0.01	0.42	Infill
JD415	44.0	55.0	11.0	0.43	0.09	<0.01	0.14	0.05	0.01	0.39	Infill
JD415	65.0	153.0	88.0	0.51	0.11	0.01	0.14	0.06	0.01	0.43	Infill
Incl	78.0	80.0	2.0	0.86	0.21	0.04	0.30	0.29	0.03	0.98	Infill
and	110.0	115.0	5.0	0.77	0.17	0.02	0.18	0.15	0.01	0.64	Infill
and	122.0	126.0	4.0	1.40	0.27	0.01	0.18	0.03	0.02	0.76	Infill
JD415	165.5	210.0	44.6	0.61	0.13	<0.01	0.14	0.07	0.02	0.47	Infill
Incl	191.0	194.0	3.0	0.56	0.11	<0.01	0.14	0.45	0.02	0.77	Infill
JD415	375.0	437.8	62.8	0.69	0.17	0.01	0.17	0.06	0.02	0.53	Infill
Incl	387.9	390.6	2.7	1.64	0.48	0.03	0.31	0.10	0.03	1.13	Infill
and	401.0	409.1	8.1	2.16	0.53	0.02	0.29	0.16	0.03	1.32	Infill
JD415	505.0	514.8	9.8	0.80	0.32	0.01	0.16	0.50	0.02	0.95	Extension
Incl	510.5	514.0	3.5	1.37	0.57	0.01	0.20	1.35	0.02	1.95	Extension
JD415	523.7	528.3	4.7	0.38	0.11	0.07	0.15	0.12	0.01	0.46	Extension
JD415	537.0	609.1	72.1	0.92	0.15	0.23	0.14	0.21	0.01	0.76	Extension
Incl	543.0	551.0	8.0	3.70	0.39	1.74	0.15	1.12	0.01	3.05	Extension
and	572.0	580.8	8.8	1.72	0.28	0.11	0.12	0.28	0.01	1.04	Extension
JD416	204.0	293.0	89.0	0.58	0.11	0.01	0.13	0.06	0.02	0.45	Infill
Incl	204.0	206.0	2.0	2.18	0.37	<0.01	0.13	0.01	0.08	1.15	Infill
and	248.0	250.0	2.0	0.63	0.12	0.04	0.13	0.29	0.02	0.67	Infill
and	265.0	268.0	3.0	0.96	0.18	0.02	0.17	0.16	0.02	0.71	Infill
JD416	308.0	327.0	19.0	0.66	0.13	0.01	0.14	0.04	0.01	0.46	Infill
Incl	311.0	316.0	5.0	1.25	0.24	0.01	0.15	0.04	0.02	0.68	Infill
JD416	342.0	348.0	6.0	0.33	0.07	0.01	0.13	0.07	0.01	0.35	Infill
JD416	357.0	377.0	20.0	0.65	0.13	0.02	0.15	0.10	0.02	0.53	Infill
Incl	368.0	374.2	6.2	0.70	0.13	0.03	0.21	0.19	0.03	0.70	Infill
JD416	591.0	603.0	12.0	0.58	0.11	0.15	0.15	0.03	0.02	0.49	Infill
Incl	592.0	594.0	2.0	0.79	0.15	0.31	0.24	<0.01	0.04	0.74	Infill
JD416	623.0	696.0	73.0	0.49	0.11	0.03	0.15	0.07	0.01	0.44	Infill
Incl	678.0	680.0	2.0	1.37	0.07	0.38	0.14	0.64	0.01	1.32	Infill
and	683.0	686.0	3.0	1.01	0.11	0.05	0.13	0.29	0.01	0.77	Infill
JD416	742.7	750.9	8.2	0.41	0.08	0.15	0.15	0.08	0.01	0.47	Infill
JD417	309.0	345.0	36.0	0.43	0.09	0.01	0.14	0.06	0.01	0.40	Infill
JD417	351.0	438.8	87.8	0.66	0.13	0.01	0.15	0.09	0.02	0.51	Infill
Incl	360.6	369.0	8.4	0.68	0.13	0.01	0.19	0.15	0.02	0.63	Infill

	From	То	Interval	Pd	Pt	Αu	Ni	Си	Со		
Hole ID	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	Ni Eq (%)	Туре
and	400.0	403.0	3.0	0.73	0.15	0.01	0.15	0.21	0.02	0.63	Infill
and	424.7	429.0	4.3	1.08	0.32	0.01	0.31	0.29	0.03	1.05	Infill
JD417	779.4	818.0	38.6	0.60	0.11	0.07	0.17	0.21	0.02	0.63	Infill
Incl	779.4	789.6	10.2	0.84	0.14	0.05	0.19	0.39	0.02	0.89	Infill
and	807.0	818.0	11.0	0.72	0.14	0.15	0.15	0.29	0.02	0.76	Infill
JD418	715.0	725.0	10.0	0.44	0.13	0.03	0.08	0.11	0.02	0.40	Extension
Incl	720.0	722.0	2.0	0.82	0.23	0.06	0.12	0.17	0.03	0.69	Extension
JD420	143.0	175.0	32.0	0.33	0.09	0.01	0.13	0.09	0.01	0.37	Infill
JD420	249.0	265.0	16.0	0.63	0.12	0.01	0.15	0.03	0.01	0.45	Extension
JD420	291.0	462.8	171.8	0.58	0.13	<0.01	0.16	0.05	0.02	0.46	Extension
Incl	294.0	296.0	2.0	1.74	0.36	0.01	0.17	0.04	0.02	0.89	Extension
and	355.0	357.0	2.0	0.91	0.19	<0.01	0.23	0.10	0.02	0.71	Extension
JD420	487.0	540.1	53.1	1.17	0.46	0.09	0.14	0.08	0.01	0.75	Extension
Incl	513.0	515.0	2.0	2.05	0.21	0.07	0.15	0.07	0.01	0.98	Extension
and	518.0	539.6	21.6	1.59	0.87	0.17	0.12	0.08	0.01	0.99	Extension
JD421	399.0	554.0	155.0	0.67	0.14	0.01	0.14	0.06	0.01	0.48	Extension
Incl	410.0	412.1	2.1	1.17	0.28	0.01	0.14	0.07	0.01	0.68	Extension
and	425.0	431.0	6.0	0.91	0.21	0.02	0.15	0.11	0.02	0.63	Extension
and	465.0	473.0	8.0	1.06	0.20	0.02	0.19	0.08	0.02	0.70	Extension
and	499.0	506.0	7.0	1.03	0.20	0.01	0.15	0.07	0.01	0.63	Extension
and	508.0	510.0	2.0	0.95	0.19	0.01	0.16	0.09	0.02	0.64	Extension
and	524.0	528.0	4.0	1.36	0.26	0.01	0.18	0.08	0.02	0.79	Extension
and	532.0	540.0	8.0	0.90	0.17	0.01	0.17	0.12	0.02	0.65	Extension
and	543.0	545.0	2.0	0.94	0.21	0.01	0.21	0.12	0.02	0.72	Extension
JD421	560.0	578.0	18.0	0.40	0.14	0.01	0.11	0.06	0.01	0.36	Extension
JD422	390.0	463.7	73.7	0.68	0.14	0.01	0.15	0.10	0.02	0.53	Extension
Incl	415.0	420.8	5.8	0.66	0.14	0.03	0.15	0.30	0.02	0.71	Extension
and	425.0	427.0	2.0	1.03	0.22	0.02	0.22	0.14	0.02	0.78	Extension
and	430.1	441.0	11.0	0.99	0.20	0.02	0.17	0.08	0.02	0.65	Extension
JD423	325.0	331.0	6.0	0.43	0.11	0.01	0.11	0.04	0.01	0.35	Extension
JD423	337.8	350.0	12.2	0.33	0.09	0.01	0.11	0.05	0.01	0.31	Extension
JD423	359.2	375.9	16.7	0.34	80.0	0.01	0.14	0.06	0.01	0.37	Extension
JD423	382.5	390.6	8.2	0.33	0.07	<0.01	0.17	0.03	0.01	0.35	Extension
JD423	397.9	411.1	13.2	0.54	0.16	0.01	0.12	0.08	0.01	0.44	Extension
JD423	416.0	420.0	4.0	0.72	0.36	0.04	0.13	0.20	0.01	0.65	Extension
JD423	426.1	490.8	64.7	1.81	0.55	0.03	0.20	0.09	0.02	1.04	Extension
Incl	438.0	441.6	3.6	3.69	0.98	0.14	0.22	0.15	0.02	1.86	Extension
and	449.1	457.7	8.6	1.79	0.24	0.02	0.45	0.22	0.04	1.38	Extension
and	465.0	467.0	2.0	3.66	0.35	0.03	0.17	0.03	0.02	1.49	Extension
and	470.0	490.0	20.0	3.24	1.31	0.04	0.19	0.08	0.02	1.65	Extension
JD424	184.0	186.0	2.0	0.02	<0.01	0.48	0.03	0.76	0.01	0.88	Infill
JD424	371.6	375.0	3.4	0.04	0.01	0.09	0.07	0.38	0.01	0.46	Extension

Hole ID	From	То	Interval	Pd	Pt	Αu	Ni	Си	Со	Ni Eq (%)	Туре
Hole ID	(m)	(m)	(m)	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	NI LY (/0)	туре
JD424	389.7	394.0	4.3	0.64	1.48	0.02	0.04	0.05	0.01	0.62	Extension
JD424	405.4	444.9	39.5	0.69	0.26	0.03	0.14	0.16	0.02	0.60	Extension
Incl	407.0	412.7	5.7	0.79	0.18	0.05	0.23	0.54	0.02	1.06	Extension
and	431.0	437.0	6.0	2.35	0.85	0.03	0.20	0.14	0.02	1.31	Extension
JD424	579.0	588.2	9.2	0.48	0.12	0.01	0.15	0.10	0.02	0.46	Extension
JD424	624.0	693.0	69.0	0.72	0.17	0.02	0.15	0.09	0.02	0.54	Extension
Incl	626.0	632.0	6.0	1.09	0.26	0.03	0.16	0.17	0.02	0.77	Extension
and	652.0	658.0	6.0	1.19	0.24	0.02	0.17	0.14	0.02	0.78	Extension
and	662.0	668.0	6.0	0.89	0.17	0.01	0.19	0.06	0.02	0.61	Extension
JD424	727.8	743.4	15.6	0.40	0.08	0.01	0.12	0.05	0.01	0.34	Extension
JD425	737.0	784.0	47.0	0.78	0.31	0.03	0.12	0.09	0.01	0.55	Extension
Incl	749.0	759.0	10.0	1.37	0.48	80.0	0.19	0.18	0.01	0.96	Extension
and	766.0	777.0	11.0	1.20	0.48	0.04	0.13	0.09	0.01	0.74	Extension
JD425	870.0	877.0	7.0	0.42	0.10	0.01	0.12	0.09	0.02	0.40	Extension
JD425	891.0	1072.3	181.3	0.81	0.18	0.04	0.14	0.12	0.01	0.60	Extension
Incl	919.0	922.0	3.0	1.28	0.29	0.01	0.16	0.12	0.02	0.78	Extension
and	933.0	947.2	14.2	1.02	0.22	0.01	0.20	0.11	0.02	0.71	Extension
and	968.0	970.0	2.0	1.00	0.23	0.01	0.16	0.02	0.02	0.61	Extension
and	994.0	1014.0	20.0	2.42	0.54	0.24	0.14	0.55	0.02	1.62	Extension
and	1028.0	1030.0	2.0	1.17	0.19	0.05	0.14	0.12	0.02	0.72	Extension
and	1050.0	1053.0	3.0	1.66	0.22	0.03	0.18	0.06	0.02	0.86	Extension
JD426	715.0	724.0	9.0	0.69	0.40	0.04	0.04	<0.01	0.01	0.39	Extension
JD426	731.0	734.0	3.0	1.04	0.41	0.03	0.11	0.04	0.02	0.62	Extension
Incl	731.0	733.0	2.0	1.34	0.55	0.04	0.10	0.04	0.01	0.74	Extension
JD426	742.0	747.0	5.0	0.62	0.21	0.02	0.13	0.01	0.01	0.43	Extension
JD426	752.0	778.0	26.0	0.87	0.34	0.04	0.10	0.07	0.01	0.56	Extension
Incl	754.0	758.0	4.0	1.90	0.68	0.05	0.16	0.10	0.01	1.05	Extension
and	769.0	771.0	2.0	1.75	0.64	0.06	0.18	0.15	0.02	1.07	Extension
JD426	849.9	852.7	2.9	0.59	0.15	0.02	0.11	0.06	0.01	0.43	Extension
JD426	857.0	1110.0	253.0	0.73	0.14	0.02	0.15	0.08	0.02	0.53	Extension
Incl	905.0	914.0	9.0	0.88	0.18	0.01	0.19	0.08	0.02	0.63	Extension
and	932.0	934.9	2.9	1.01	0.22	0.01	0.32	0.20	0.03	0.94	Extension
and	1085.0	1087.0	2.0	0.96	0.21	0.06	0.15	0.11	0.02	0.66	Extension
and	1096.0	1110.0	14.0	4.81	0.73	0.18	0.19	0.36	0.02	2.30	Extension

Table 2. New drill hole collar, survey data and assaying status – Gonneville Project.

Area	Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	EOH Depth (m)	Survey type	Collar Azi * (°)	Collar Dip * (°)	Assay status
Gonneville	JD388	Core	425240	6513480	258	535.0	GPS-RTK	128	-64	Reported
Gonneville	JD389	Core	425147	6513550	260	579.9	GPS-RTK	126	-66	Reported
Gonneville	JD390	Core	425280	6513503	256	495.6	GPS-RTK	128	-71	Reported

Area	Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	EOH Depth (m)	Survey type	Collar Azi * (°)	Collar Dip * (°)	Assay status
Gonneville	JD391	Core	425778	6512520	243	87.3	GPS-RTK	91	-60	Reported
Gonneville	JD392	Core	425739	6512521	243	105.4	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD393	Core	424279	6513238	252	1035.7	GPS-RTK	121	-65	Reported
Gonneville	JD394	Core	425056	6511923	235	261.5	GPS-RTK	90	-60	Reported - NSA
Gonneville	JD395	Core	425664	6512328	246	89.8	GPS-RTK	92	-60	Reported - NSA
Gonneville	JD396	Core	425659	6512357	245	84.4	GPS-RTK	93	-60	Reported
Gonneville	JD397	Core	425220	6511862	229	174.5	GPS-RTK	88	-61	Reported
Gonneville	JD398	Core	424902	6512171	234	438.3	GPS-RTK	90	-60	Reported
Gonneville	JD399	Core	425661	6512388	244	77.9	GPS-RTK	88	-60	Reported - NSA
Gonneville	JD400	Core	425603	6512325	246	78.4	GPS-RTK	91	-60	Reported - NSA
Gonneville	JD401	Core	425617	6512361	245	63.4	GPS-RTK	89	-59	Reported - NSA
Gonneville	JD402	Core	424994	6512358	235	444.4	GPS-RTK	89	-65	Reported
Gonneville	JD403	Core	425175	6513592	259	582.9	GPS-RTK	128	-68	Reported
Gonneville	JD404	Core	424802	6513549	273	1000.1	GPS-RTK	129	-80	Reported
Gonneville	JD405	Core	424912	6512192	234	393.3	GPS-RTK	89	-55	Reported
Gonneville	JD406	Core	424778	6512515	244	666.4	GPS-RTK	130	-65	Reported
Gonneville	JD407	Core	424895	6512361	236	507.4	GPS-RTK	90	-63	Reported
Gonneville	JD408	Core	423745	6513601	252	1347.9	GPS-RTK	91	-70	Reported
Gonneville	JD409	Core	424246	6511544	258	1208.9	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD410	Core	424912	6512192	234	450.3	GPS-RTK	91	-60	Reported
Gonneville	JD411	Core	424706	6512447	239	678.4	GPS-RTK	126	-64	Reported - NSA
Gonneville	JD412	Core	424976	6511914	239	315.4	GPS-RTK	89	-60	Reported - NSA
Gonneville	JD413	Core	424743	6512258	238	699.3	GPS-RTK	90	-66	Reported - NSA
Gonneville	JD414	Core	424849	6511550	242	1120.0	GPS-RTK	89	-68	Reported - NSA
Gonneville	JD415	Core	424827	6512579	248	678.3	GPS-RTK	130	-66	Reported
Gonneville	JD416	Core	424666	6512709	250	801.3	GPS-RTK	127	-67	Reported
Gonneville	JD417	Core	424568	6512809	249	909.4	GPS-RTK	128	-65	Reported
Gonneville	JD418	Core	423999	6513036	248	1025.2	GPS-RTK	91	-70	Reported
Gonneville	JD419	Core	424812	6512200	237	568.0	GPS-RTK	90	-70	Reported - NSA
Gonneville	JD420	Core	425132	6513156	263	618.5	GPS-RTK	126	-71	Reported
Gonneville	JD421	Core	424489	6512971	251	981.0	GPS-RTK	129	-67	Reported
Gonneville	JD422	Core	424444	6512903	246	966.3	GPS-RTK	128	-65	Reported
Gonneville	JD423	Core	425230	6513534	258	553.3	GPS-RTK	130	-70	Reported
Gonneville	JD424	Core	424949	6513567	269	801.3	GPS-RTK	129	-70	Reported
Gonneville	JD425	Core	424487	6513609	269	1145.4	GPS-RTK	130	-71	Reported
Gonneville	JD426	Core	424361	6513501	267	1187.1	GPS-RTK	130	-71	Reported

^{*} NSA – No significant assays.

Table 3. Gonneville Mineral Resource Estimate (JORC Code 2012), 28 March 2023.

Domain	Cut-off Grade	Category	Mass		Grade					Contained Metal									
			(Mt)	Pd (g/t)	Pt (g/t)	Αυ (g/t)	Ni (%)	Cu (%)	Co (%)	NiEq (%)	PdEq (g/t)	Pd (Moz)	Pt (Moz)	Au (Moz)	Ni (kt)	Cu (kt)	Co (kt)	NiEq (kt)	PdEq (Moz)
		Measured	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oxide	0.9g/t Pd	Indicated	7.3	1.9	-	0.06	-	-	-	-	2.0	0.45	-	0.01	-	-	-	-	0.47
Oxide	0.79/174	Inferred	0.2	1.9	-	0.07	-	-	-	-	2.0	0.01	-	-	-	-	-	-	0.02
		Subtotal	7.5	1.9	-	0.06	-	-	-	-	2.0	0.47	-	0.01	-	-	-	-	0.49
		Measured	0.38	0.82	0.17	0.03	0.19	0.17	0.020	0.70	2.2	0.01	-	-	0.72	0.63	0.07	2.7	0.03
Sulphide	0.35%	Indicated	14	0.66	0.15	0.03	0.16	0.10	0.018	0.54	1.7	0.30	0.07	0.01	22	14	2.5	77	0.77
(Transitional)	NiEq	Inferred	0.27	0.60	0.16	0.03	0.15	0.12	0.015	0.54	1.7	0.01	-	-	0.42	0.32	0.04	1.5	0.01
		Subtotal	15	0.66	0.15	0.03	0.16	0.10	0.018	0.55	1.7	0.31	0.07	0.01	23	15	2.6	81	0.81
		Measured	2.3	1.1	0.26	0.03	0.24	0.18	0.019	0.87	2.7	0.08	0.02	-	5.4	4.2	0.43	20	0.20
Sulphide	0.35%	Indicated	280	0.67	0.15	0.03	0.16	0.09	0.015	0.53	1.7	6.0	1.3	0.23	440	260	43	1500	15
(Fresh)	NiEq	Inferred	200	0.67	0.15	0.03	0.15	0.09	0.015	0.53	1.6	4.4	0.96	0.16	310	180	29	1100	11
		Subtotal	480	0.67	0.15	0.03	0.16	0.09	0.015	0.53	1.7	10	2.3	0.39	750	440	72	2600	26
		Measured	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Underground	0.40%	Indicated	1.7	0.75	0.21	0.06	0.14	0.08	0.013	0.55	1.7	0.04	0.01	-	2.4	1.4	0.23	9.5	0.10
ondergroond	NiEq	Inferred	52	0.78	0.17	0.03	0.16	0.11	0.015	0.59	1.8	1.3	0.28	0.05	83	56	7.7	310	3.1
		Subtotal	54	0.78	0.17	0.03	0.16	0.11	0.015	0.59	1.8	1.3	0.29	0.06	86	57	7.9	320	3.2
		Measured	2.7	1.1	0.24	0.03	0.23	0.18	0.019	0.85	2.6	0.09	0.02	-	6.2	4.9	0.51	23	0.23
All		Indicated	300	0.70	0.15	0.03	0.16	0.09	0.015	0.54	1.7	6.8	1.4	0.26	460	280	45	1600	16
Oil .		Inferred	250	0.70	0.15	0.03	0.15	0.09	0.015	0.54	1.7	5.7	1.2	0.22	390	230	37	1400	14
		Total	560	0.70	0.15	0.03	0.16	0.09	0.015	0.54	1.7	13	2.7	0.48	860	520	83	3000	30

Note some numerical differences may occur due to rounding to 2 significant figures.

PdEg oxide (Palladium Equivalent g/t) = Pd (g/t) + 1.27x Au (g/t)

NiEq sulphide (Nickel Equivalent %) = Ni (%) + 0.32x Pd(g/t) + 0.21x Pt(g/t) + 0.38x Au(g/t) + 0.88x Cu(%) + 3.00x Co(%)

PdEq sulphide (Palladium Equivalent g/t) = Pd (g/t) + 0.67x Pt(g/t) + 1.17x Au(g/t) + 3.11x Ni(%) + 2.57x Cu(%) + 9.33x Co(%)

Underground resources are outside the pit above a 0.40% NiEq cut off grade based on sub-level caving mining method Includes drill holes drilled up to and including 11 December 2022.

The Gonneville Resource is quoted in both nickel equivalent (NiEq) and palladium equivalent (PdEq) terms to take into account the contribution of multiple potentially payable metals. The cut-off grade for the sulphide domain was determined using NiEq in preference over PdEq, due to the assumed requirement for sulphide flotation to recover the metals.

PdEq is quoted given the relative importance of palladium by value at the assumed prices. Separate metal equivalent calculations are used for the oxide and transitional/sulphide zones to take into account the differing metallurgical recoveries in each zone.

Oxide Domain

Initial metallurgical testwork indicates that only palladium and gold are likely to be recovered in the oxide domain, therefore no NiEq grade has been quoted for the oxide. The PdEq grade for the oxide has been calculated using the formula:

PdEq oxide (g/t) = Pd(g/t) + 1.27x Au(g/t).

- Metal recoveries based on limited metallurgical test work completed to date:
 - « Pd 75%, Au 95%.
- « Metal prices used are consistent with those used in the pit optimisation:
 - ((US\$1,800/oz Pd, US\$1,800/oz Au.

Transitional and Fresh Sulphide Domains

Based on metallurgical testwork completed to date for the sulphide domain, it is the Company's opinion that all the quoted elements included in metal equivalent calculations (palladium, platinum, gold, nickel, copper and cobalt) have a reasonable potential of being recovered and sold.

Only limited samples have been collected from the transitional zone due to its relatively small volume. Therefore, the metallurgical recovery of all metals in this domain are unknown. However, given the relatively small proportion of the transition zone in the Mineral Resource, the impact on the metal equivalent calculation is not considered to be material.

Metal equivalents for the transitional and sulphide domains are calculated according to the formula below:

- "
 NiEq %= Ni (%) + 0.32x Pd (g/t) + 0.21x Pt (g/t) + 0.38x Au (g/t) + 0.83x Cu (%) + 3.00x Co (%);
- " PdEq (g/t) = Pd (g/t) + 0.67x Pt (g/t) + 1.17x Au (g/t) + 3.11x Ni (%) + 2.57x Cu (%) + 9.33x Co (%)

Metal recoveries used in the metal equivalent calculations are based on rounded average Resource grades for the higher-grade sulphide domain (>0.6% NiEq cut-off):

((Pd - 60%, Pt - 60%, Au - 70%, Ni - 45%, Cu - 85%, Co - 45%.

Metal prices used are consistent with those used in the Whittle Resource pit shell optimisation (based on P20-30 long term analyst estimates):

US\$1,800/oz Pd, US\$1,200/oz Pt, US\$1,800/oz Au, US\$24,000/t Ni, US\$10,500/t Cu and US\$72,000/t Co.

A-1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond core was either quarter cored (HQ for Gonneville drilling) half cored (NQ or HQ for exploration drilling) with samples taken over selective intervals ranging from 0.2m to 1.2m (typically 1.0m).
Sampling	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Qualitative care taken when sampling diamond drill core to sample the same half of the drill core.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	Mineralisation is easily recognised by the presence of sulphides. Diamond drill core sample intervals were selected on a qualitative assessment of sulphide content
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 A mixture of diamond drill core size used including NQ (47.6mm), HQ (63.5mm diameter) or PQ (85mm) has been used for holes in this announcement. Triple tube has been used from surface until competent bedrock and then standard tube thereafter. The Gonneville resource includes RC holes drilled with a face sampling bit Core orientation is by an ACT Reflex (ACT II RD) tool
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Individual recoveries of diamond drill core samples were assessed quantitively by comparing measured core length with expected core length from drillers mark. Generally, core recovery was excellent in fresh rock and approaching 100%. Core recovery in oxide material is often poor due to sample washing out. Core recovery in the oxide zone averages 60%
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Diamond drilling utilises triple tube coring in the oxide zone to improve sample recovery. This results in better

Criteria	JORC Code explanation	Commentary
		recoveries, but recovery is still only moderate to good.
		 Diamond core samples were consistently taken from the same side of the core
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 There is no evidence of a sample recovery and grade relationship in unweathered material.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All drill holes were logged geologically including, but not limited to; weathering, regolith, lithology, structure, texture, alteration and mineralisation. Logging was at an appropriate quantitative standard for infill drilling and resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	 Logging is considered qualitative in nature. Diamond drill core is photographed wet before cutting.
	The total length and percentage of the relevant intersections logged.	 All holes were geologically logged in full.
	If core, whether cut or sawn and whether quarter, half or all core taken.	 Diamond core was either quarter cored (HQ for Gonneville drilling) or half cored (NQ or HQ and PQ for exploration drilling) with samples taken over selective intervals ranging from 0.2m to 1.2m (typically 1.0m).
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 RC assay samples were collected as two 1m splits from the rig cyclone via a cone splitter. The cone splitter was horizontal to ensure sample representivity. Wet or damp samples were noted in the sample logging sheet. A majority of samples were dry.
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Sample preparation is industry standard and comprises oven drying, jaw crushing and pulverising to -75 microns (80% pass).
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Field duplicates were collected at an approximate ratio of one in twenty five. Diamond drill core field duplicates collected as ½ core.
	Measures taken to ensure that the	 In the majority of cases the entire hole has been sampled and assayed.
	sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 Duplicate sample results were compared with the original sample results. There is no bias observed in the data.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Drill sample sizes are considered appropriate for the style of

Appendix C JORC Table 1

Criteria	JORC Code explanation	Commentary
		mineralisation sought and the nature of the drilling program.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Diamond drill core underwent sample preparation and geochemical analysis by ALS Perth. Au-Pt-Pd was analysed by 50g fire assay fusion with an ICP-AES finish (ALS Method code PGM-ICP24). A 34-element suite was analysed by ICP-MS following a four-acid digest (ALS method code ME-ICP61 including Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Zr. Additional ore-grade analysis was performed as required for elements reporting out of range for Ni, Cr, Cu (ALS method code ME-OG-62) and Pd, Pt (ALS method code PGM-ICP27). These techniques are considered total digests.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable as no data from such tools or instruments are reported
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	 Certified analytical standards and blanks were inserted at appropriate intervals with an insertion rate of >5%. All QAQC samples display results within acceptable levels of accuracy and precision.
	The verification of significant intersections by either independent or alternative company personnel.	Significant drill intersections are checked by the Project Geologist and then by the General Manager Exploration. Significant intersections are cross-checked with the logged geology and drill core after final assays are received.
Verification of sampling and assaying	The use of twinned holes.	 No twinning undertaken for drill holes for exploration holes (HD prefix) At Gonneville (holes with a JD or JRC prefix) eight sets of twinned holes (RC versus Diamond) have been drilled to provide a comparison between grade/thickness variations over a maximum of 5m separation between drill holes. Palladium assays have been focused on, as part of twin hole comparisons for six sets, with no significant grade bias observed. Two sets of twins have been analysed for Pd, Ni and Cu with no significant grade bias apparent.

Criteria	JORC Code explanation	Commentary
		 Assays correlate well between holes. In detail, there is variation for higher grade samples in terms of both location and grade. There is no discernible bias between drill types.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Primary drill data was collected digitally using OCRIS software before being transferred to the master SQL database. All procedures including data collection, verification, uploading to the database etc are captured in detailed procedures and summarised in a single document.
	Discuss any adjustment to assay data	 No adjustments were made to the lab reported assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Drill hole collar locations are initially recorded by Chalice employees using a handheld GPS with a +/- 3m margin of error. RTK-DGPS collar pick-ups replace handheld GPS collar pick-ups and have +/-20 mm margin of error. Planned and final hole coordinates are compared after pick up to ensure that the original target has been tested. Downhole survey data is collected using a gyro tool (Axis Champ Gyro and Reflex Gyro Sprint) and recorded in Microsoft Excel format. Downhole survey tools are calibrated on a weekly basis using a surveyed test bed.
	Specification of the grid system used.	The grid system used for the location of all drill holes is GDA94 - MGA (Zone 50).
	Quality and adequacy of topographic control.	 RLs for reported holes were derived from RTK-DGPS pick-ups.
	Data spacing for reporting of Exploration Results.	 Diamond drill hole spacing is variable given the early stage of exploration drilling.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Results from drilling to date at the Gonneville deposit are considered sufficient to assume geological or grade continuity appropriate for Mineral Resource estimation procedure(s) and classifications.
	Whether sample compositing has been applied.	 No compositing undertaken for diamond drill core or RC samples.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 RC and Diamond drill holes at Gonneville were typically oriented within 15° of orthogonal to the interpreted dip and strike of the known zone of mineralisation. However, several holes were drilled at less optimal azimuths due to site access

Appendix C JORC Table 1

Criteria	JORC Code explanation	Commentary
		constraints or to test for alternative mineralisation orientations. At exploration targets the orientation of any mineralisation intersected is unknown.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The orientation of the drilling is not considered to have introduced sampling bias.
		 Samples were collected in polyweave bags at the core cutting facility. The polyweave bags have five samples each and are cable tied.
Sample security	The measures taken to ensure sample security.	 Filled bags were collected into palletised bulk bags at the field office and delivered directly from site to ALS laboratories in Wangara, Perth by a Chalice contractor several times weekly.
		 Cube Consulting conducted a site visit and review of the sampling techniques and data as part of the July 2022 Resource Estimate on 12 May 2022.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 SRK completed an independent assurance review of the Chalice procedures and documentation in 2021, which continue to apply in 2023, and the appropriateness of Cube Consulting estimation methods employed

Section 2 Reporting of Exploration Results A-2

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Exploration activities are ongoing over E70/5119. The holder CGM (WA) Pty Ltd is a wholly owned subsidiary of Chalice Mining Limited Portions of E70/5119 cover the Julimar State Forest, in which Chalice has an approved Conservation Management Plan and Native Vegetation Clearing Permit. E70/5119 partially overlaps ML1SA, a State Agreement covering Bauxite mineral rights only. There are no known encumbrances other than the ones noted above.
	The security of the tenure held at the time of reporting along with any known	 There are no known impediments to operating on the tenements where they cover private freehold land. Drilling within the Julimar State Forest

Criteria	IODC Code avalentian	Commontant
Criteria	impediments to obtaining a licence to operate in the area.	operates under an approved Conservation Management Plan The tenements are in good standing. E70/5119 partially overlaps ML1SA, a State Agreement covering Bauxite mineral rights only. E70/5199 also partially covers the Bindoon Army Training Ground. Currently there is no agreement in place to allow exploration within the training ground
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 There is no previous exploration at Gonneville and only limited exploration has been completed by other exploration parties in the vicinity of the targets identified by Chalice to date. Chalice has compiled historical records dating back to the early 1960's which indicate only three genuine explorers in the area, all primarily targeting Fe-Ti-V mineralisation. Over 1971<1972, Garrick Agnew Pty Ltd undertook reconnaissance surface sampling over prominent aeromagnetic anomalies in a search for 'Coates deposit style' vanadium mineralisation. Surface sampling methodology is not described in detail, nor were analytical methods specified, with samples analysed for V2O5, Ni, Cu, Cr, Pb and Zn, results of which are referred to in this announcement. Three diamond holes were completed by Bestbet Pty Ltd targeting Fe-Ti-V situated approximately 3km NE of JRC001. Bestbet Pty Ltd undertook 27 stream sediment samples within E70/5119. Elevated levels of palladium were noted in the coarse fraction (<5mm+2mm) are reported in this release. Finer fraction samples did not replicate the coarse fraction results. A local AMAG survey was flown in 1996 by Alcoa using 200m line spacing which has been used by Chalice for targeting purposes. A local AMAG survey was flown in 1996 by Alcoa using 200m line spacing which has been used by Chalice for targeting purposes. An Alcoa and CRA JV completed seven diamond holes in the 1970s targeting a magnetic high to the north of E70/5119 and the east of

Appendix C JORC Table 1

Criteria	JORC Code explanation	Commentary
		E70/5351 testing for vanadium (Boomer Hill).
Geology	Deposit type, geological setting and style of mineralisation.	The target deposit type is an orthomagmatic Ni-Cu-PGE sulphide deposit, within the Yilgarn Craton. The style of sulphide mineralisation intersected consists of massive, matrix, stringer and disseminated sulphides typical of metamorphosed and structurally overprinted orthomagmatic Ni sulphide deposits.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth hole length.	Provided in body of text.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 No material information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Significant intercepts are reported using a length-weighted >0.3% NiEq cut off. A maximum of 4m internal dilution has been applied. Higher grade internal intervals are reported using a >0.6% NiEq length-weighted cut off. A maximum of 2m internal dilution has been applied. No top cuts have been applied
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Metal price assumptions used in the metal equivalent calculations are: US\$1,800/oz Pd, US\$1,200/oz Pt, US\$1,800/oz Au, US\$24,000/t Ni, US\$10,500/t Cu, US\$72,000/t Co. Metallurgical recovery assumptions used in the metal equivalent

Critoria	IOPC Code explanation	Commontany
Criteria	JORC Code explanation	Commentary calculation for the oxide material are:
		Pd – 75%, Au – 95%.
		• Hence for the oxide material PdEq (g/t) = Pd (g/t) + 1.27 x Au (g/t) .
		 Metallurgical recovery assumptions used in the metal equivalent calculation for the sulphide (fresh) material are: Pd – 60%, Pt – 60%, Au – 70%, Ni – 45%, Cu – 85%, Co - 45%.
		 Hence for the sulphide material NiEq = Ni (%) + 0.32x Pd(g/t) + 0.21x Pt(g/t) + 0.38x Au(g/t) + 0.83x Cu(%) + 3x Co(%) and PdEq = Pd (g/t) + 0.67x Pt(g/t) + 1.17x Au(g/t) + 3.11x Ni(%) + 2.57x Cu(%) + 9.33x Co(%).
		 The volume of transitional material is small and considered unlikely to materially affect the overall metal equivalent calculation.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 At Gonneville RC and Diamond drill holes were typically oriented within 15° of orthogonal to the interpreted dip and strike of the known zone of mineralisation. However, several holes were drilled at less optimal azimuths due to site access constraints or to test for alternative mineralisation orientations.
widths and intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	 All widths are quoted down-hole. For regional drilling, true widths are not known.
		 At Gonneville, true widths vary depending on the orientation of the hole and the orientation of the mineralisation, but generally approximate downhole widths
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All holes including those without significant intercepts have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results;	All meaningful data has been reported

Appendix C JORC Table 1

Criteria	JORC Code explanation	Commentary
	bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or largescale step-out drilling).	 Diamond drilling will continue to test high-priority targets including EM conductors. Further drilling along strike and down dip may occur at these and other targets depending on results.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Any potential extensions to mineralisation are shown in the figures in the body of the text.